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Summary

� Rapidly enhancing oleoresin production in conifer stems through genomic selection and

genetic engineering may increase resistance to bark beetles and terpenoid yield for liquid bio-

fuels.
� We integrated association genetic and genomic prediction analyses of oleoresin flow

(g 24 h�1) using 4854 single nucleotide polymorphisms (SNPs) in expressed genes within a

pedigreed population of loblolly pine (Pinus taeda) that was clonally replicated at three sites in

the southeastern United States.
� Additive genetic variation in oleoresin flow (h2 � 0.12–0.30) was strongly correlated

between years in which precipitation varied (ra � 0.95), while the genetic correlation between

sites declined from 0.8 to 0.37 with increasing differences in soil and climate among sites. A

total of 231 SNPs were significantly associated with oleoresin flow, of which 81% were spe-

cific to individual sites. SNPs in sequences similar to ethylene signaling proteins, ABC trans-

porters, and diterpenoid hydroxylases were associated with oleoresin flow across sites.
� Despite this complex genetic architecture, we developed a genomic prediction model to

accelerate breeding for enhanced oleoresin flow that is robust to environmental variation.

Results imply that breeding could increase oleoresin flow 1.5- to 2.4-fold in one generation.

Introduction

In the last decade, outbreaks of bark beetles in coniferous forests
of North America have caused unprecedented tree mortality and
economic losses (Nowak et al., 2008; van Mantgem et al., 2009;
Waring et al., 2009), converting forests that were previously
atmospheric carbon sinks into carbon sources (Kurz et al., 2008).
Native species of bark beetle rapidly kill healthy trees by aggregat-
ing on their hosts, boring into the stem, and vectoring pathogenic
fungi that are tolerant of conifer defenses (Paine et al., 1997;
Wang et al., 2013). Climate change is thought to have exacer-
bated tree mortality from bark beetle infestations by increasing
the number of beetle generations yr–1, expanding the range of
beetles and their associated pathogens, and by weakening host
defenses (Raffa et al., 2008; Bentz et al., 2010).

Increasing oleoresin production in conifer stems through
breeding and biotechnology may enhance baseline resistance to
bark beetles in managed plantations (Phillips & Croteau, 1999).
Oleoresin is a viscous mixture of terpenoids stored under positive

pressure within resin canals in the stems of conifers (Trapp &
Croteau, 2001). Oleoresin that flows from the stem upon
wounding obstructs beetle entry and inhibits germination and
growth of pathogenic fungi (Franceschi et al., 2005; Kopper
et al., 2005). Among pines, survival after a bark beetle infestation
is positively correlated with the rate of oleoresin flow (Strom
et al., 2002) and the number of resin canals within the stem
(Kane & Kolb, 2010). However, increased stem oleoresin
production alone may not be sufficient to protect conifer stands
from severe bark beetle population eruptions, where healthy trees
with the greatest oleoresin flow can become the preferred hosts of
beetles (Boone et al., 2011).

The potential to utilize terpenoids in liquid biofuels is an addi-
tional incentive to genetically enhance oleoresin production in
conifer stems. Whereas the energy content of bioethanol is only
70% of that of gasoline (Peralta-Yahya & Keasling, 2010),
advanced biofuels derived from terpenoids have similar energy
content to gasoline and diesel, with densities and hygroscopicities
that are amenable to blending with fossil fuels (Harvey et al.,
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2010; Peralta-Yahya et al., 2011). Conifers require fewer inputs
of fertilizer and herbicide than annual food crops even under
intensive management, and the net energy balance of producing
cellulosic ethanol from conifer wood compares favorably with
ethanol derived from maize starch (Evans & Cohen, 2009).

The capacity to genetically enhance terpenoid production in
conifer stems is largely untapped. Under normal growing condi-
tions, pines accumulate oleoresin to 1–5% of their stem mass,
but stem oleoresin contents of 20% have been observed after
treatment with chemical elicitors of resinosis (Stubbs et al., 1984;
Wolter & Zinkel, 1984). Although it remains to be demonstrated
whether these high terpenoid concentrations can be achieved
through genetics, previous studies indicate that variation in oleo-
resin flow is heritable and positively correlated with growth
(Squillace & Bengtson, 1961; Roberds et al., 2003; Romanelli &
Sebbenn, 2004).

Developing a detailed knowledge of how allelic variation in
conifer breeding populations relates to phenotypic variation in
oleoresin flow can accelerate selective breeding for enhanced oleo-
resin production. Conifer breeding has traditionally relied on
phenotypic characterization of the breeding population near the
harvest age to infer genetic merit for selection, requiring � 20 yr
to complete one breeding cycle (White & Carson, 2004).
Genomic selection, or the prediction of breeding values from the
summed effects of a panel of genetic markers in linkage
disequilibrium with alleles controlling a trait (Meuwissen et al.,
2001), circumvents the need to phenotype the breeding popula-
tion for each generation. When combined with top-grafting to
induce early seed development, genomic selection could reduce
the breeding cycle of Pinus taeda from 12–20 yr to 4–7 yr
(Resende et al., 2012a).

Genetic engineering is an alternative strategy to rapidly
increase oleoresin production in conifer stems. This approach
may include overexpressing and increasing the catalytic efficiency
of terpenoid biosynthetic enzymes (Aharoni et al., 2006; Leonard
et al., 2010), down-regulating competing pathways (e.g. lignin
biosynthesis), and reprogramming stem development to favor
resin canal formation (Zulak & Bohlmann, 2010). While many
genes in the terpenoid biosynthetic pathway have been cloned in
conifers (Kim et al., 2008, 2009; Schmidt & Gershenzon, 2008;
Hamberger et al., 2011; Keeling et al., 2011), the genes involved
in the regulation of terpenoid synthesis (e.g. transcriptional and
post-translational regulation), the development of resin canals,
and the transport of oleoresin into resin canals have yet to be
characterized. Coordinated up-regulation of the terpenoid bio-
synthetic pathway and resin canal development may be achieved
through transgenic manipulation of regulatory genes, as has gen-
erally been suggested for the metabolic engineering of plant
defense pathways (Jirschitzka et al., 2012).

The genomic selection and biotechnological approaches to
increase oleoresin production in conifers are potentially compli-
cated by genotype9 environment (G9 E) interactions.
Substantial G 9 E in oleoresin flow was observed among families
of Pinus sylvestris and Pinus elliotti planted at different sites
(Bridgen, 1980; Romanelli & Sebbenn, 2004). For traits in
which G 9 E is prevalent, the effects of alleles may depend on

the environment (Gillespie & Turelli, 1989), which reduces the
prediction accuracy of genomic selection models (Resende et al.,
2012a), and leads to uncertainty about the performance of trans-
genic varieties in diverse field environments (Zeller et al., 2010).

We measured oleoresin flow in a pedigreed population of
loblolly pine that was clonally replicated at three sites in the
southeastern United States and estimated heritability, site9
genotype interactions, and genetic correlations with growth. By
comparing genetic correlations in oleoresin flow across years vs
between sites, we assessed the relative effect of weather vs
climate and soils, respectively, on the genetic control of oleoresin
flow. We then used an association genetic approach to discover
genes underlying additive genetic variation in oleoresin flow and
compared their allelic effects among sites. We specifically tested
for associations with single nucleotide polymorphisms (SNPs) in
genes with potential roles in terpenoid biosynthesis. Finally, we
used cross-validation to assess how accurately the significantly
associated loci could predict additive genetic variation within and
across sites.

Materials and Methods

Oleoresin flow phenotyping in the CCLONES population

Oleoresin flow and tree growth were measured in the loblolly
pine (Pinus taeda L.) CCLONES (Comparing Clonal Lines
ON Experimental Sites) series I population. The CCLONES
population was generated from a circular mating design of 54
parents from Florida, the Atlantic coastal plain, and lower gulf
regions of the southeastern United States. Each parent was
crossed with two to six other parents to generate 71 full-sib
families with 14–23 progeny per family (Baltunis et al., 2007;
Munoz et al., 2013). Clones of these progeny were sampled for
oleoresin flow at three US field sites (Cuthbert, GA, Nassau,
FL, and Palatka, FL), which varied in climate and in soil prop-
erties in the summer of 2010 when the trees were in their sev-
enth growing season (Table 1). The Nassau site was also
sampled in the sixth growing season to estimate correlations
among repeated measures of oleoresin flow between years that
varied in precipitation (Table 1). Within each site, oleoresin
flow was sampled from three intensively managed replicates of
clonal genotypes (Baltunis et al., 2007). The position of clonal
genotypes (ramets) within replicates was randomized to incom-
plete blocks of 10–14 trees according to a resolvable alpha-
lattice design (Patterson & Williams, 1976).

To sample oleoresin flow, a single circular wound, 1.27 cm in
diameter, was made through the bark and phloem at breast
height with an arch punch (Strom et al., 2002; Roberds et al.,
2003). Immediately after wounding, taps with 15 ml tubes were
affixed to the stem over the wound site and oleoresin samples
were collected after 24 h. Oleoresin samples were weighed twice
– within 1 wk of collection (wet mass) and after the samples were
lyophilized for 3 d (dry mass) – to detect any potential bias result-
ing from occasional rainwater contamination and phenotyping
errors (Supporting Information, Fig. S1a). The heritability was
slightly higher for the dry mass measurements (Fig. S1b) and the
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additive genetic correlation between oleoresin wet mass and dry
mass was 0.99, indicating that lyophilization did not change the
genetic rankings of the clones. Therefore, oleoresin dry mass
(in g) was used in quantitative genetic analyses. Diameter at
breast height (dbh) and total tree height (ht) were measured in
cm in the sixth growing season from the trees that were sampled
for oleoresin.

SNP genotyping

A total of 7535 SNPs, discovered in expressed genes from lob-
lolly pine of diverse origin (Eckert et al., 2010), were genotyped
with the Illumina Infinium platform (Illumina, San Diego, CA,
USA) in 926 clones. A subset of 4854 SNP loci that were poly-
morphic in CCLONES was utilized in association analyses and
genomic prediction modeling. Mean and median missingness
of SNP genotypes among loci were 3.81 and 1.3%, respec-
tively.

Quantitative genetic analysis

Oleoresin dry mass, dbh, and ht data were analyzed in ASReml
v.3 (Gilmour et al., 2009) with the following multivariate mixed
models:

y ¼ 1lþ Xr rþ Zbbþ Zca þ Zf f þ Zccþ e

y ¼ 1lþ Xssþ Xr rþ Zbbþ Zca þ Zf f þ Zccþ Zsasa
þ Zsf sf þ e

Data from individual sites were analyzed with the first model
to estimate site-specific heritabilities and correlations among
traits. The data from all sites were combined and analyzed with
the second model to partition site9 genotype interactions from
genetic effects. A Box–Cox power transformation (Box & Cox,
1964) was applied to the oleoresin dry mass data (hereafter abbre-
viated as ‘tdm’ for transformed dry mass) to normalize the model
residuals (Methods S1). For both the individual site and across
site models, y is a 39Nramets (Table 1) matrix of observed phe-
notypes of tdm, dbh, and ht, and X and Z are incidence matrices
associating phenotypic observations with fixed and random fac-
tors, respectively. The effects of fixed factors, which included l
(the overall trait means), s (site effects), and r (the effects of
replicate within site), were assessed with approximate F-tests
(Kenward & Roger, 1997). Random effects were modeled with
unstructured variance-covariance matrices of tdm, dbh, and ht
and assumed to be multivariate normal with mean 0. Random
factors (followed by their phenotypic variance components)

Table 1 Description of the Pinus taeda CCLONES sites and oleoresin flow sampling

Cuthbert, GA Nassau, FL Palatka, FL

Location and date
Latitude 31°47′32″N 30°46′30″N 29°38′24″N
Longitude 84°41′32″W 81°53′30″W 81°49′27″W
Sampling dates 26–29 July 2010 20–23 July 2009

19–22 July 2010
16–19 August 2010

Climate and weather
Annual minimum temperature �9.5 to �12.5°C �6.7 to �9.4°C �3.9 to �6.7°C
Average temperature, 1 July –31 July in
year of sampling

Year 7: 28.7°C Year 6: 27.5°C
Year 7: 28.9°C

Year 7: 28.4°C

Precipitation, 1 February –31 July in year of
sampling

Year 7: 547mm Year 6: 918mm
Year 7: 537mm

Year 6: 649mm

Long-term average precipitation,
1 February –31 July

737mm 707mm 635mm

Soil properties
Soil drainage Well drained Somewhat poorly drained Poorly to very poorly drained
Soil taxonomy Fine-loamy, kaolinitic, thermic Rhodic

Kandiudult
Fine, mixed, thermic Typic,
Albaqualf

Sandy, siliceous, hyperthermic
Ultic Alaquod

Stand properties – year 6
Trees ha�1 1653 1700 1725
Basal area (m2 ha�1) 130.4 129.3 91.4

Oleoresin sampling design
Nramets Year 7: 2437 Year 6: 1829

Year 7: 2575
Year 7: 2586

Nclones Year 7: 847 Year 6: 891
Year 7: 908

Year 7: 913

Ngenotyped Year 7: 809 Year 6: 836
Year 7: 850

Year 7: 842

Precipitation and temperature data were compiled from cocorahs.org. Weather stations were within 20 km of the CCLONES sites. Annual minimum
temperatures were derived from the USDA plant hardiness zones map (www.usna.usda.gov/Hardzone/). Nramets, number of ramets with oleoresin dry
mass, total tree height (ht), and diameter at breast height (dbh) measurements (up to three ramets sampled per clone within a site); Nclones, number of
clonal genotypes sampled; Ngenotyped, number of phenotyped clones with single nucleotide polymorphism (SNP) genotype information.
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included b (incomplete block within site and replicate (r2
b I)), a

(additive genetic effect of clone (r2
a Aobs)), f (nonadditive genetic

effect of family (r2
f I)), c (nonadditive genetic effect of clone (r

2
c I)),

sa (site9 additive genetic (r2
sa I)), sf (site9 family (r2

sf I)), and e
(error (r2

e I)). Additive genetic variance (r2
a ) and estimated

breeding values (EBVs) for clones were calculated with the
observed genomic relationship matrix (Aobs), which models iden-
tity-by-descent (IBD) as a result of pedigree as well as Mendelian
segregation within families (Visscher et al., 2006). The observed
relationship matrix was reconstructed from 4854 polymorphic
SNP loci by modifying the method of Yang et al. (2010) such
that Mendelian variance in marker-estimated IBD coefficients
was estimated from the deviations from IBD expected from the
pedigree. The individual site model was modified to estimate cor-
relations between years at Nassau (y – tdm from years 6 and 7)
and correlations between sites (y – tdm from Cuthbert, Nassau,
and Palatka in year 7). Table S1 contains the formulas for esti-
mating heritabilities and correlations. The significance of correla-
tions was assessed by likelihood ratio tests (Methods S2).

Association genetic analysis

Analysis to detect significant associations between individual
SNP loci and additive genetic variation in tdm within and across
sites was carried out in two stages. First, all 4854 SNPs were
ranked according to the magnitude of their effect on additive
genetic variation in tdm. A total of 400 SNPs, which included
the most highly ranked loci and 16 SNPs in sequences similar to
terpenoid biosynthetic enzymes, were selected for the second
stage where missing SNP genotypes were imputed and the signifi-
cance of SNP effects was assessed in a multiple regression frame-
work with the Bayesian Association with Missing Data (BAMD)
module for R (Gopal et al., 2011; Li et al., 2012). The purpose of
SNP preselection was to reduce multicollinearity and computa-
tional times in the BAMD analyses (Li et al., 2012).

We tested three SNP preselection methods (additive genetic vari-
ance reduction, ridge regression, and Bayes Cp). Additive genetic
variance reduction tests each SNP individually for the proportion
of additive genetic variance explained, while ridge regression and
Bayes Cp estimate SNP effects simultaneously with multiple regres-
sion. Ridge regression shrinks SNP effects toward zero and assumes
that the effects are normally distributed, whereas Bayes Cp
estimates the proportion of SNPs with zero effect, and then assumes
that effects of the remaining SNPs are multivariate Student’s t
distributed (Habier et al., 2011; Methods S3). Among preselection
methods, SNPs selected with Bayes Cp that were significant in
BAMD analysis most accurately predicted additive genetic variation
in tdm in cross-validation (Fig. S2). Therefore, only the associa-
tion results using SNPs selected with Bayes Cp are reported.

Association analyses were conducted in BAMD with the
model:

y ¼ 1lþ Xcþ e

The response variable y comprised the best linear unbiased
predictions (BLUPs) of estimated breeding values (EBVs) of tdm

divided by their reliabilities (hereafter referred to as deregressed
EBVs). Dividing EBVs by their reliability (r2i ¼ 1
�½SEPi=pr2

a �, where SEPi is the standard error of prediction for
clone i = 1…Nclones, 0 < r2i < 1) corrected for variable shrinkage
of BLUPs as a result of imbalance in the number of phenotypic
observations per clone and in the amount of information avail-
able from relatives (Garrick et al., 2009). No subpopulation
structure was detected in CCLONES (Methods S4); therefore, it
was unnecessary to include an additional effect of subpopulation
to control for spurious associations arising from population struc-
ture (Pritchard et al., 2000).

The SNP effects were modeled by the term Xc. The incidence
matrix X contained the SNP genotypes of the 400 preselected
loci. BAMD iteratively imputed missing genotypes with a Gibbs
sampler over 50 000 generations based on correlations among the
observed SNP values, phenotypic observations, and the additive
genetic relationships (Li et al., 2012). After each imputation,
SNP effects were estimated assuming a normal distribution of
effect sizes. An SNP locus was deemed to have a significant effect
on y if the 95% confidence interval of estimated effects over the
last 40 000 generations did not intersect zero. Significant loci
were ranked according to the magnitude of their standardized
effects cstd = ½ (CIupper +CIlower)/ra, where CIupper and CIlower
are the upper and lower bounds of the 95% confidence interval
of effect size, and ra is the additive genetic standard deviation of
the trait.

Population structure from the pedigree and uncertainty in the
estimation of breeding values was modeled in the error e ~ N(0,
r2
e R) where R = Aexp +W. The expected relationship matrix

(Aexp) modeled correlation among the residuals as a result of
pedigree structure and the diagonal matrix W weighted dere-
gressed EBVs in inverse proportion to the BLUP variances after
factoring out error variance as a result of nongenetic factors
(Garrick et al., 2009).

Functional annotation and mapping of significant loci

Expressed sequence tags that contained the significant SNPs were
assessed for similarity to genes of known function with Blast2GO
(Conesa et al., 2005). A subset of the significant SNPs from each
site were located on a P. taeda genetic map from Eckert et al.
(2010), which included 1495 of the 4854 SNPs used in associa-
tion analysis.

Prediction of breeding values from genetic markers within
and among sites

Prediction of breeding values from marker genotypes within sites
was implemented in R (R Core Team, 2012) with 10-fold cross-
validation as described in Resende et al. (2012a). Briefly, clones
present within each site were randomly divided into 10 groups.
Marker effects were estimated with ridge regression of marker
genotypes on deregressed EBVs from nine-tenths of the popula-
tion. Parental effects were removed from the deregressed EBVs to
correct for gametic phase disequilibrium of unlinked markers
arising from pedigree structure (Garrick et al., 2009). Breeding
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values from the remaining one-tenth of the population were pre-
dicted by multiplying the incidence matrix of marker genotypes
by the vector of estimated marker effects. This procedure was
repeated 10 times to predict breeding values for all clones present
within a site. To predict breeding values among sites, the geno-
types of markers significantly associated with tdm were regressed
on EBVs from the site where they were significant. The estimated
marker effects were then used to predict the breeding values from
other sites. The accuracy of prediction within and among sites
was assessed with the Pearson correlation between deregressed
EBVs and SNP-estimated breeding values (rEBV, GEBV).

Results

Phenotypic variation in constitutive oleoresin flow and
cumulative growth

The untransformed oleoresin dry mass distributions were posi-
tively skewed at all sites (Fig. 1a), but were approximately nor-
mally distributed after transformation. Transformed oleoresin
dry mass (tdm) differed significantly among sites (P < 0.001 for
all pairwise site contrasts, Table S2), but site rankings for tdm
from year 7 (Nassau > Palatka >Cuthbert) did not correspond to
site rankings for dbh (Cuthbert >Nassau > Palatka) (Fig. 1b). At
Nassau, where oleoresin flow was measured in consecutive years,
mean tdm was significantly greater in year 7, during a dry sum-
mer, relative to wet growing season in year 6 (Tables 1, S2).

Genetic and site9 genotype effects on constitutive
oleoresin flow

Within sites, additive genetic variance (r2
a ) accounted for 11.8–

30.3% of the phenotypic variance in tdm, and nonadditive
genetic variance (r2

f þ r2
c ) explained an additional 8.4–17.1% of

the phenotypic variance. Across sites, phenotypic variance in tdm
consisted of 11.8% additive genetic variance, 9.4% nonadditive
genetic variance, and 6.9% site9 genotype variance (r2

sa þ r2
sf ).

The heritabilities and site9 genotype effects on tdm were
comparable to those of dbh and ht (Fig. 2).

Repeated measurements of tdm at the Nassau site were moder-
ately correlated between years 6 and 7 (rp = 0.41, Fig. 3a), in
which precipitation varied (Table 1); however, strong additive
(ra = 0.95) and total genetic (rg = 0.90) correlations were observed
across years (Fig. 3b). Stochastic variation in tdm between years
was attributable mainly to environmental effects (Fig. 3c,
Table 1). By contrast, the additive genetic correlation of tdm
between sites declined from 0.8 to 0.37 (Fig. 4) with increasing
differences in soil and climate among sites (Table 1).
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Correlations between oleoresin flow and cumulative
growth

Genetic correlations between oleoresin dry mass and cumulative
tree growth (i.e. ht and dbh in an even-aged stand) were positive
at Nassau and Palatka, but were not significant at Cuthbert and
in the combined site analysis. Site9 genotype and environmental
effects on tdm and growth were also positively correlated. Gener-
ally, correlations between tdm and tree size were weaker than cor-
relations between dbh and ht (Table 2).

Associations between SNPs and additive genetic variation
in oleoresin flow

Between 41 and 65 SNPs were associated with tdm at individual
sites, and 73 SNPs were associated with tdm in the across-site
analysis (Table 3). While few significant tdm associations were

shared between sites (two to six common associations), greater
numbers of common associations were detected between years at
Nassau (10 common associations) and between individual sites
and the across-site analysis (eight to 20 common associations).
The additive genetic effects of individual SNP loci were small,
ranging from 0.05 to 0.15 additive genetic standard deviations
(Table S3). No changes in the sign of the significant SNP effects
were detected between sites, and correlations in the magnitude of
common SNP effects varied from �0.375 to 0.9 among site pairs
(Table 3). A total of 231 SNP loci were associated with tdm
among all analyses (Table S3), and 132 of these loci were located
on the genetic map from Eckert et al. (2010). Mapped SNPs that
were significantly associated with tdm were scattered throughout
the genome (Fig. 5).

Many significant tdm associations were unique to specific sites
(Table 3; Fig. 5). Site-specific associations may be attributed to
unbalanced representation of clonal genotypes at different sites,
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according to the likelihood ratio test.
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Fig. 4 Genetic correlations (ra, additive genetic; rg, total genetic)� 1 SE between transformed oleoresin dry mass (tdm) estimated from Pinus taeda

CCLONES genotypes that were clonally replicated at different sites. (a–c) Panels are ordered from sites that are closest geographically to sites that are most
distant. Breeding values of tdm are plotted to visualize the genetic correlations between sites, which were estimated from the equations in Table S1. All
correlations were significant (P < 0.05) according to the likelihood ratio test.
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statistical significance of different SNP loci linked to the same
quantitative trait locus (QTL) at different sites, and site9QTL
interactions. To control for imbalance in clonal genotypes among
sites, the association analyses of tdm from individual sites were
repeated with 722 clones that were present at all three sites. Fur-
thermore, a common set of 157 mapped SNPs, where adjacent
loci were > 10 cM apart (12.5 cM average distance between adja-
cent loci), were utilized in the association analysis of each site to
control for linkage and SNP preselection. After implementing
these controls, 81% of the tdm associations were site-specific
(Table S4), supporting the hypothesis that site-specific associa-
tions are attributable to site9QTL interactions.

Within sites, the significant SNPs predicted additive genetic
variation in tdm more accurately than randomly selected SNPs

(Fig. 6). Maximum prediction accuracy was reached before the
stepwise inclusion of all SNPs that were associated with tdm, and
was greater than the accuracies obtained from the estimated
effects of all 4854 polymorphic SNPs. Furthermore, SNPs associ-
ated with tdm in year 6 were significant predictors of tdm breed-
ing values from year 7 at Nassau (Fig. 6b).

The accuracy by which significant SNPs from one site pre-
dicted additive genetic variation from another site (Fig. 7) was
proportional to the additive genetic correlation (ra) between sites
(Fig. 4). Cuthbert and Palatka, with an additive genetic correla-
tion of 0.37, had the lowest between-site prediction accuracies
(rEBV,GEBV = 0.33–0.36). By contrast, Nassau and Palatka, with
an additive genetic correlation of 0.80, had the greatest between-
site prediction accuracies (rEBV,GEBV = 0.42–0.43) and the pre-
diction accuracy between years at Nassau (ra = 0.95; Fig. 3) varied
from 0.4 to 0.5. Notably, the SNPs that were significant in the
across-site association analysis (Table S3), in which site9 geno-
type effects were partitioned from additive genetic variation
(Fig. 2), predicted breeding values from single sites with accura-
cies (rEBV,GEBV = 0.42–0.56) similar to within-site prediction
accuracies (rEBV,GEBV = 0.51–0.62).

Associations with SNPs in sequences similar to terpene
biosynthetic genes

We tested for tdm associations with SNPs in sequences similar to
four of seven steps of the DXP pathway, three geranyl-geranyl
pyrophosphate synthases (GGPPS), one terpene synthase, and
seven cytochrome P450s (Table S5). The DXP pathway synthe-
sizes the five-carbon isoprenoid precursors of mono- and diterpe-
noids (Rodriguez-Concepcion & Boronat, 2002); GGPPS
condenses isoprenoids into the 20-carbon skeletons of diterpe-
noids (Schmidt & Gershenzon, 2008); terpene synthases are a

Table 2 Correlations (� 1 SE) between transformed oleoresin dry mass and cumulative growth in the Pinus taeda CCLONES population

ra rg re rp rsg

Cuthbert, GA
tdm vs dbh 0.26� 0.14 0.17� 0.09 0.20� 0.03* 0.19� 0.03* –
tdm vs ht 0.16� 0.25 0.18� 0.14 0.19� 0.03* 0.19� 0.03* –
ht vs dbh 0.73� 0.11* 0.72� 0.04* 0.65� 0.02* 0.67� 0.02* –

Nassau, FL
tdm vs dbh 0.43� 0.13* 0.39� 0.07* 0.27� 0.03* 0.31� 0.03* –
tdm vs ht 0.55� 0.15* 0.34� 0.08* 0.19� 0.02* 0.24� 0.03* –
ht vs dbh 0.67� 0.10* 0.71� 0.04* 0.63� 0.02* 0.65� 0.02* –

Palatka, FL
tdm vs dbh 0.19� 0.18 0.26� 0.08* 0.32� 0.02* 0.32� 0.02* –
tdm vs ht 0.39� 0.19* 0.39� 0.07* 0.31� 0.02* 0.31� 0.02* –
ht vs dbh 0.86� 0.04* 0.82� 0.03* 0.83� 0.01* 0.83� 0.01* –

Across sites
tdm vs dbh 0.15� 0.13 0.22� 0.07* – – 0.40� 0.11*
tdm vs ht 0.27� 0.15 0.31� 0.07* – – 0.36� 0.12*
ht vs dbh 0.75� 0.06* 0.75� 0.03* – – 0.72� 0.06*

An asterisk (*) next to a correlation indicates that the correlation was significant (P < 0.05) by likelihood ratio test (Methods S2). Environmental and pheno-
typic correlations were not estimated across sites because environmental deviations were assumed to be independent among sites. tdm, Transformed oleo-
resin dry mass; ht, total tree height; dbh, diameter at breast height; ra, additive genetic correlation; rg, total genetic correlation; re, environmental
correlation (within sites); rp, phenotypic correlation (within sites); rsg, site9 genotype correlation (across sites).

Table 3 Single nucleotide polymorphisms (SNPs) associated with transformed
oleoresin dry mass within and between sites in the Pinus taeda CCLONES
population

Across
sites Cuthbert

Nassau,
year 6

Nassau,
year 7 Palatka

Across sites 73 0.038 0.900 0.478 0.551
Cuthbert 12 65 NA �0.375 0.630
Nassau,
year 6

8 2 41 0.354 0.169

Nassau,
year 7

20 5 10 65 0.120

Palatka 15 5 4 6 55

Diagonal elements are the number of SNPs significantly associated with
transformed oleoresin dry mass (tdm) at each site. Elements below the
diagonal are the number of loci that were significant in pairs of association
analyses. Elements above the diagonal are the correlations among the
magnitude (i.e. absolute values) of the effects of SNPs that were
significant between analyses.
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large gene family in conifers that synthesize diverse cyclic terpe-
noids (Bohlmann et al., 1998; Keeling et al., 2011); and cyto-
chrome P450s (CYP450) catalyze the final oxidation steps in
diterpenoid resin acid synthesis (Ro et al., 2005; Hamberger
et al., 2011). Only SNPs in two CYP450s were significantly asso-
ciated with tdm. One significant CYP450 (EST contig 0_14468;
Table S3) was similar to 3-epi-6-deoxocathasterone 23-mono-
oxygenase, a gene involved in brassinosterioid biosynthesis (Kim
et al., 2005). The other CYP450 (contig 2_9017) was similar to
taxane 13-alpha-hydroxylase, a gene involved in the synthesis of
the diterpenoid taxol (Jennewein et al., 2000).

Discussion

Phenotypic variation in oleoresin flow is heritable

Our results confirm that variation in oleoresin flow is heritable in
loblolly pine and can therefore be increased through selective
breeding. Although additive genetic variation accounted for only
12–30% of phenotypic variation within sites and 12% of the var-
iation across sites (Fig. 2), we predict that oleoresin flow could be
increased 1.5- to 2.4-fold in one generation by crossing clones in
the 90th to 99th percentile of the additive genetic distribution

Fig. 5 Genetic map positions of single nucleotide polymorphisms (SNPs) significantly associated with transformed oleoresin dry mass and their effects by
site. Of the 231 loci that were significantly associated with transformed oleoresin dry mass (tdm) among all analyses, 132 were mapped on the Pinus taeda
linkage map from Eckert et al. (2010). SNP effects are in units of additive genetic standard deviations. Vertical dashed lines demarcate linkage groups
(LG1–LG12).
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Fig. 6 Accuracies by which the summed
effects of single nucleotide polymorphisms
(SNPs) associated with transformed oleoresin
dry mass (tdm) predicted tdm breeding
values from year 7 within individual sites
(a–c) and across sites (d). Prediction
accuracies, measured as the Pearson
correlation between genomic estimated
breeding values (GEBV) and estimated
breeding values from quantitative genetic
analyses (EBV), were computed with 10-fold
cross-validation. The prediction accuracies of
SNPs associated with tdm in year 7 were
compared with prediction accuracies of SNPs
associated with tdm in year 6 (c), accuracies
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(CIs) of prediction accuracy from random loci
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of loci significantly associated with tdm
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partitions of the Pinus taeda CCLONES
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(Methods S5, Table S6). These large predicted gains from selec-
tion are the result of a strong positive skew in the phenotypic dis-
tribution of oleoresin flow (Fig. 1; Roberds et al., 2003).

The within-site broad-sense heritability estimates reported here
(H2 = 0.25–0.38; Fig. 2) are lower than previous heritability esti-
mates of oleoresin flow from a loblolly pine progeny test grown
on one site in Florida (H2 = 0.66–0.69; Roberds et al., 2003).
Roberds et al. (2003) averaged two observations of oleoresin mass
per tree before estimating heritability, which reduced the within-
individual component of variation. By contrast, we sampled each
tree once per time point, but sampled up to three clonal replicates
of each genotype per site. Environmental variation within and
between cloned genotypes may have reduced our heritability esti-
mates in comparison to Roberds et al. (2003), but clonal replica-
tion yielded more precise estimates of breeding values and a way
to examine genotype9 environment interactions (Gezan et al.,
2006; Baltunis et al., 2007).

Effects of weather vs climate and soils on the genetic
control of oleoresin flow

Within the Nassau site, average oleoresin flow was greatest in the
seventh growing season (Fig. 1a; Table S2), which was relatively
dry compared with the previous year (Table 1). This result
supports the hypothesis that moderate water deficit increases
oleoresin flow by limiting growth more than photosynthesis
(Lorio, 1986; Lorio & Sommers, 1986). The strong genetic cor-
relation in tdm between years at Nassau (Fig. 3b) indicates that
oleoresin flow in loblolly pine genotypes of diverse origin
responds similarly to variation in weather. By contrast,

substantial site9 genotype interactions in oleoresin flow were
observed between Cuthbert and Palatka, the sites that were most
distinct in climate and soils (Fig. 4c, Table 1). Together, these
trends indicate that soil and climatic variation are stronger drivers
of genotype9 environment interactions in oleoresin flow than
year-to-year variation in weather.

Genetic correlations between oleoresin flow and growth
among sites

Estimates of the genetic correlation between oleoresin flow and
growth varied from positive to nonsignificant among sites
(Table 2), indicating that selective breeding for enhanced oleo-
resin production would not negatively impact growth. We
hypothesize that variation in the genetic correlation between
oleoresin flow and growth can be attributed, in part, to differ-
ences in tree–tree competition among sites. The weakest oleoresin
flow–growth correlations (Table 2) and the lowest average oleo-
resin flow rates (Fig. 1a; Table S2) were observed at Cuthbert,
the site with the largest trees (Fig. 1b) and highest basal area
(Table 1). Previous studies have indicated that competition
reduces allocation to herbivory defense (Moreno et al., 2009;
Aspinwall et al., 2011), especially among shade-intolerant species
such as loblolly pine (Calder et al., 2011). Conversely, thinning
increased oleoresin flow and bark beetle resistance in Pinus
ponderosa (Wallin et al., 2008). Thus, the results of this study and
others (Nowak et al., 2008 and references therein) suggest the
importance of managing competition to fully realize the genetic
capacity for oleoresin flow in managed pine plantations.

Environmental variation interacts with the genetic
architecture of oleoresin flow

Association genetic analysis of transformed oleoresin dry mass
yielded over 200 significant associations within and across sites
(Tables 3, S3), indicating that that oleoresin flow is a quantitative
trait (Fig. 5). Furthermore, 81% of the significant associations were
site-specific (Table S4), implying that the effects of alleles underly-
ing quantitative genetic variation in oleoresin flow depend on the
environmental context. The molecular mechanisms hypothesized
to mediate genotype9 environment interactions in plants include
environmental regulation of gene expression, epigenetic modifica-
tion, and post-translational modification (Nicotra et al., 2010).
Numerous regulatory genes were associated with oleoresin flow
(Table S3), including transcription factors (regulators of gene
expression), genes involved in histone modification and the pro-
cessing of microRNAs (regulators of epigenetic modifications),
and protein kinases and phosphatases (regulators of post-transla-
tional modification), indicating that any or all of these processes
might contribute to site9 genotype interactions in oleoresin flow.

Prospects for genomic selection for enhanced oleoresin flow

Genomic selection has the potential to accelerate breeding for
enhanced oleoresin production by alleviating the need to pheno-
type the breeding population in each generation (Meuwissen
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Fig. 7 Prediction accuracies of single nucleotide polymorphism (SNP) loci
significantly associated with transformed oleoresin dry mass (tdm) across
sites and years in the Pinus taeda CCLONES population. The effects of
significant loci were estimated with ridge regression on deregressed
estimated breeding values (EBVs) from the site where the loci were
significant. These locus effects were then used to predict the deregressed
EBVs from another site. Prediction accuracies of SNP loci within sites
where the loci were significant (circular arrows) were estimated with 10-
fold cross-validation (Fig. 6). CUT, Cuthbert, GA; NAS, Nassau, FL; PAL,
Palatka, FL; ALL, across-site analysis.

� 2013 The Authors

New Phytologist� 2013 New Phytologist Trust
New Phytologist (2013) 199: 89–100

www.newphytologist.com

New
Phytologist Research 97



et al., 2001; Grattapaglia & Resende, 2011; Resende et al.,
2012a,b). Prediction models that included only the significantly
associated SNPs predicted additive genetic variation in oleoresin
flow with greater accuracy than models with either randomly
selected SNPs or all polymorphic loci (Fig. 6). This result indi-
cates that our association genetic pipeline efficiently selected
markers linked to causative polymorphisms and suggests that
SNP preselection can increase accuracy in genomic prediction
modeling by reducing model overparameterization (Schulz-
Streeck et al., 2011; Resende et al., 2012b). Despite the prevalence
of site9 genotype effects (Figs 2, 4) and site-specific associations
(Tables 3, S4), SNPs that were significantly associated with breed-
ing values from the across-site quantitative genetic analysis pre-
dicted additive genetic variation at single sites with accuracies
comparable to within-site prediction accuracies (Fig. 7). Thus, to
develop genomic selection models that accurately predict genetic
variation in diverse environments, marker effects should be esti-
mated on breeding values in which genotype9 environment
interactions have been partitioned from genetic effects.

Association analysis to discover candidate genes for
transgenic manipulation

The association genetic results reported here (Table S3) are a
preliminary step towards targeting candidate genes for over-
expression or silencing to validate function in oleoresin produc-
tion. We highlight a few genes associated with oleoresin flow that
are intriguing within the context of previous research.

Ethylene synthesis and signaling Ethylene induces oleoresin
synthesis and the differentiation of resin canals in members of the
Pinaceae (Hudgins & Franceschi, 2004; Schmidt et al., 2011),
including loblolly pine (Telewski et al., 1983; Stubbs et al.,
1984). One SNP in an ACC synthase, a rate-limiting enzyme
that catalyzes the first step of ethylene synthesis, was significant
across sites (contig 0_17633). Furthermore, SNPs in ETHYL-
ENE-INSENSITVE 2 (contig 0_14532), which is involved in
the early detection of ethylene within the cell (Alonso et al.,
1999), and an APETALA2 domain transcription factor (contig
0_3648) that functions downstream of EIN2 (Ogawa et al.,
2007) were also associated with tdm (Table S3).

Oleoresin transport The mechanism(s) by which oleoresin is
transported from living cells in the stem to the extracellular space
of resin canals in conifers is unknown (Zulak & Bohlmann,
2010). An ATP-binding cassette (ABC) transporter (NpABC1)
mediates the export of a diterpene (sclareol) from Nicotiana
plumbaginfolia cells (Jasinski et al., 2001); therefore, it is plausible
that ABC transporters are also involved in the transport of conifer
oleoresin. Variation in tdm was significantly associated with two
putative ABC transporters (UMN_2415 and 0_8686).

Associations detected in an independent population Eckert
et al. (2012) conducted association genetic analyses of stem dit-
erpenoids in a loblolly pine population of unrelated individuals
that is independent of the CCLONES population studied here.

SNPs in two genes (contigs 0_9534 and UMN_596) that were
associated with stem abietic acid content in Eckert et al. (2012)
were also associated with oleoresin flow in CCLONES. Contig
0_9534 is a putative acid phosphatase, while the function of con-
tig UMN_596 is unknown.

Conclusion

Both genomic selection and genetic engineering to enhance oleo-
resin production in conifer stems could benefit from an improved
understanding of the underlying genetic architecture. Although
heritable variation in oleoresin flow in loblolly pine is controlled
by many genes with allelic effects that are dependent on variation
in climate and soils, we showed that it is feasible to develop geno-
mic selection models that can accurately predict genetic variation
in diverse environments. Work is underway to verify the signifi-
cant oleoresin flow associations through analysis of gene expres-
sion, association genetic analysis in an independent population,
and genetic transformation.
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